Generalization of Kaplansky Theorem

Rekha Rani
Department of Mathematics
S. V. College
Aligarh-202001(INDIA)

Date of Submission: 01-03-2022
the ring.

Abstract

Let R be a ring with unity and satisfies a condition $\left[x^{m}, y^{n}\right]=0$, for all $x, y \varepsilon$ R. In this paper, we extend a well known result proved by Kaplansky.

KEYWORDS: Torsion free ring, Commutator, power map

I. INTRODUCTION

Let R be a ring with unity. An element x of a ring R is said to be n-torsion free if $n x=0$ implies $x=0$. If $n x=0$ implies $x=0$, for every $x \varepsilon R$, then we say that R is n torsion free. A ring is said to be commutative if and only if $[x, y]=0$, for every pair x, y of ring elements. This definition of commutativity of ring prompts us to investigate the commutativity of a ring if there exists a positive integer n larger than 1 such that $\left[x^{n}, y\right]=0$, for all pairs x, y of the ring elements. The non commutative ring of 3×3 strictly upper triangular matrices over the ring Z of integers rules out the possibility of arbitrary rings with $\left[x^{\mathrm{n}}, y\right]=0$ to be commutative. Despite such bad examples, algebraists have been investigating the classes of rings which turn out to be commutative under the mentioned condition.

In this direction, Kaplansky [5] proved that a semisimple ring R in which there exists a positive integer $n \geq 1$ such that $\left[x^{m}, y^{n}\right]=0$, for all $x, y \in R$ must be commutative. This result attracted many algebraists including Carl Faith [3] and I. N. Herstein [4]. However most of the results available in the literature are about very restricted classes of rings. For example Faith [1] established the result for division ring whereas Herstein [2] proved commutativity of rings in which commutator ideal is not nil. In this paper, we extend the result for ring with unity 1 , imposing torsion condition on the elements of

II. MAIN RESULT

We begin with the following lemma which is required to prove our theorem.

LEMMA 2.1[8, Lemma1]. Suppose R is an associative ring with unity. For any $x \in \mathrm{R}$, let

$$
S_{0}^{r}=x^{r}
$$

and

$$
S_{k}^{r}=S_{k-1}^{r}(1+x)-S_{k-1}^{r}(x), k \geq 1
$$

Then
(i) $\quad S_{r-1}^{r}(x)=!r\left[\frac{1}{2}(r-1)+x\right]$
(ii) $\quad S_{r}^{r}(x)=!r$
(iii) $S_{j}^{r}(x)=0$, for $\mathrm{j} \geq r$.

THEOREM. Let R be a ring with unity in which there exists a pair of positive integers $m \geq 1, n \geq 1$ such that $\left[x^{\mathrm{m}}, y^{n}\right]=0$, for all $x, y \in R$. If R is $!m!n$ torsion free, then R is necessarily commutative.

PROOF. Using the notations of the above lemma, the condition of our theorem can be written as follows:
$\left[S_{0}^{m}(x), y^{n}\right]=0$, for all $x, y \varepsilon R$.
On replacing x by $1+x$ in the above identity, we have

$$
\begin{equation*}
\left[S_{0}^{m}(1+x), y^{n}\right]=0, \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

That is,
$\left[S_{1}^{m}(x)+S_{0}^{m}(x), y^{n}\right]=0$, for all $x, y \varepsilon R$.
Since commutator function is linear in both the coordinates, we have
$\left[S_{1}^{m}(x), y^{n}\right]+\left[S_{0}^{m}(x), y^{n}\right]=0$, for all $x, y \in R$.
In view of (1), this yields
$\left[S_{1}^{m}(x), y^{n}\right]=0$, for all $x, y \varepsilon R$.
Again replace x by $1+x 1$ to get
$\left[S_{1}^{m}(1+x), y^{n}\right]=0$, for all $x, y \varepsilon R$.
Now repeating the process ($m-1$) times and using the Lemma 2.1, we obtain
$\left[S_{m-1}^{m}(x), y^{n}\right]=0$, for all $x, y \in R$.
Thus by (i) of Lemma 2.1, we get

$$
\left[\frac{1}{2}(m-1)!m+!m x, y^{n}\right]=0 .
$$

i.e,

$$
\left[!m x, y^{n}\right]=0, \text { for all } x, y \in R
$$

Now once again writing the above relation in the notation of Lemma 2.1, we have

$$
!m\left[x, S_{0}^{n}(y)\right]=0, \text { for all } x, y \in R
$$

This time working in the second coordinate of the commutator and proceeding in this way as above, we finally get
$!m!n[x, y]=0$, for all $x, y \in R$.
Since R is $!m!n$ torsion free, we have $[x, y]=0$, for all $x, y \in R$ which shows that R is commutative.

Remark2.1. Evidently, for $m=1$ or $n=1$, the above theorem turns out to be an extension of Kaplansky theorem. Our theorem also includes the theorem of Faith,Lithman and many others.

REMARK2.2. A cursory look at the proof of the theorem will reveal that the result remains still valid if the ring under consideration is m ! as well as n ! torsion free Also the condition of the hypothesis can be further weakened by assuming that the commutator in R are m ! and n ! torsion free.
REMARK2.3. The following example demonstrates that the torsion condition on the
commutators of the ring of our theorem can not be dropped.

EXAMPLE. Consider the ring
$R=\left\{\begin{array}{c}a I_{3}+D_{0}=\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0\end{array}\right), I_{3} \text { is } 3 \times 3 \\ \text { identity matrix and } a, b, c, d \in G F(2)\end{array}\right\}$.
It is readily verify that R is a noncommutative ring with unity satisfying $\left[x^{2}, y\right]=0$, for all $x, y \varepsilon \mathrm{R}$. Indeed, R is not 2-torsion free.

REFERENCES

[1]. Bell, H. E., On the power map and ring commutativity, CANAD. MATH. BULL. 21, (1978), 399-404.
[2]. Bell, H. E., On rings commuting powers, MATH. JAPONICA 24, (1980), 473-478.
[3]. Faith, C., "Posner Algebraic division extensions", PROC. AMER. MATH. SOC., 110(1960), 43-53.
[4]. Herstein, I. N., "Two remarks on commutativity of rings", CANAD. J. MATH. 7(1955), 411-412.
[5]. Kaplansky, I., "A theorem on division rings", CANAD. J. MATH. 3 (1951), 290-292.
[6]. Ligh, S. and Richoux, A., A commutativity theorem for rings, BULL. AUSTRAL. MATH. SOC. 16(1977), 7577.
[7]. Lithman, I., Rings that are radical over a commutative subring, MATH. SHORNIK 83(1970), 513-523.
[8]. Tong, J., "On the commutativity of a ring with identity", CANAD. MATH. BULL. 27(4), (1984), 456-460.

